

Proteomic markers of cardiovascular and metabolic health in at-risk NASH

Missy Simpson', Leigh Alexander¹, Vlad Ratziu², Elisabetta Bugianesi², Jerome Boursier⁴, Olivier Govaere⁶, Dina Tiniakos⁶, Kristy Wonders⁶, Yasaman Vali⁸, Jenny Lee⁶, Stephen Williams¹, Patrick Bossuyt⁶, Quentin M. Anstee⁶, Rachel Ostroff¹ ¹ SomaLogic Operating Co., Inc., Assistance Publique–Höpitaux de Paris, höpital Pitié Salpétrière, Sorbonne University, ICAN (Institute of Cardiometabolism and Nutrition), ²Dept of Medical Sciences, University of Torino, ⁴Laboratoire HIFH, Université d'Angers, ⁴Université d'Angers, ⁵University of Amsterdam, Epidemiology and Data Science, Amsterdam Public Health, ⁶Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University

Background Results · Non-alcoholic steatohepatitis (NASH) is a complex disease process that affects multiple organ systems. • Assessing or monitoring patients holistically presents a unique at-risk NASH: challenge for patient care and in the clinical trial setting. · Higher liver fat: every doubling of liver fat score is associated Large-scale proteomic profiling using a novel aptamer-based technology has facilitated the development and validation of with a 15.6 times increased odds for at-risk NASH · Impaired glucose tolerance: every doubling of impaired glucose blood-based proteomic signatures for 11 different cardiometabolic SomaSignal Tests (SST) as well as the four biopsy components of at-risk NASH NASH. Higher body fat: every doubling of body fat score is associated We applied cardiometabolic blood tests to individuals with NAFLD with a 5.6 times increased odds for at-risk NASH and NASH to investigate the cardiometabolic proteomic phenotype · Decreased cardiorespiratory fitness: every halving of of at-risk NASH in samples derived from the LITMUS Metacohort. odds for at-risk NASH Increased risk for renal insufficiency within four years: every Methods

- The LITMUS Metacohort study is a retrospective collection of blood samples with accompanying histology and clinical data from participants diagnosed with NAFLD and NASH in the European NAFLD Registry, with the goal of identifying non-invasive biomarkers for the diagnosis, risk stratification, and monitoring of patients with NAFLD and NASH.1
- Plasma samples from 182 participants were analyzed with multiplexed modified aptamer-based proteomics (SomaScan assay) to measure ~5000 plasma proteins and to generate predictions for the previously validated metabolic health proteomic signatures.
- · We used logistic regression to estimate odds ratios to compare log2 transformed proteomic cardiometabolic signatures for individuals with biopsy-identified "at-risk" NASH (NAS ≥ 4 and fibrosis ≥ F2) to participants with NAFLD or less severe NASH; pvalues were corrected for multiple comparisons using false discovery rate.

SomaSignal[™] tests

Samples + Clinical Data

SomaSignal Tests²

	Resi	ilts	
SomaSignal test	Odds Ratio (95% C1)		FDR correcte p-value
Liver fat	16.6 (3.60-76.4)		- 0.001
Impaired glucose tolerance	8.33 (2.91-23.8)		0.0005
Percent body fat	6.63 (2.18-20.2)	1	0.003
Decreased cardiorespiratory fitness	1.92 (1.38-2.67)	⊢ ∎-	0.0005
Renal insufficiency risk	1.86 (1.42-2.44)	i ⊨∎-I	0.0005
CV risk score	1.69 (1.32-2.16)	Heri	0.0005
Visceral fat	1.63 (1.18-2.24)	H	0.007
Resting energy rate	1.22 (0.92-1.63)	F a I	0.25
Lean body mass	1.08 (0.91-1.44)	H a -I	0.61
Estimated renal function	1.00 (0.98-1.02)		0.73
Alcohol impact	0.89 (0.73-1.09)	Hert	0.36
		1 10 Stronger association with at-risk NASH	100

Figure 1. Logistic regression results showing the association between SST and at-risk NASH in the LITMUS Metacohort. Shaded SST are significantly associated with at-risk NASH

emographics and clinical characteristics of the LITMUS Metacohor

	Biopsy identified at-risk NASH	Biopsy identified not at-risk NASH	p-value	
Characteristic	n = 92 (50.5%)	n = 90 (49.5%)		
Gender				
n(%) female	43 (46.7%)	29 (32.2%)	0.05	
n(%) male	49 (53.3%)	61 (67.8%)	0.05	
Mean age (years), (SD, range)	56.5 (10.4, 22.0-76.0)	53.5 (11.8, 20.0-78.0)	0.08	
Diabetes status				
n(%) Yes	71 (77.2%)	39 (43.3%)	< 0.000	
n(%) No	21 (22.8%)	51 (56.7%)	<0.000	
Hypertension status*				
n(%) Yes	74 (80.4%)	56 (62.2%)	0.0007	
n(%) No	18 (19.6%)	34 (37.8%)		
Cirrhosis status				
n(%) Yes	15 (16.3%)	4 (4.4%)		
n(%) No	77 (83.7%)	86 (95.6%)	0.01	
Mean eGFR(ml/min/1.73m²), (SD, range)	88.4 (19.7, 41.3-137.5)	89.7 (18.0, 42.6-131.2)	0.64	
Mean BMI (SD, range)	35.7 (5.9, 25.1-53.8)	31.2 (6.8, 17.8-58.8)	<0.000	
n(%) on lipid-lowering medications				
n(%) Yes	54 (58.7%)	38 (42.2%)	0.02	
n(%) No	28 (30.4%)	43 (47.8%)	0.02	
Liver parameters				
Mean ALT (U/L), (SD, range)	67.2 (36.9, 17.0-231.0)	51.3 (28.4, 16.0-155.0)	0.001	
Mean ALP (U/L), (SD, range)	88.3 (37.2, 33.0-227.0)	75.7 (28.5, 31.0-174.0)	0.02	
Mean AST (U/L), (SD, range)	51.5 (23.6, 19.0-142.0)	34.9 (15.7, 12.0-107.0)	<0.000	
Mean GGT (U/L), (SD, range)	150.2 (173.2, 17.0-896.0)	89.1 (116.9, 5.0-620.0)	0.008	
Mean platelet count (10 ⁹ /L), (SD, range)	224.5 (74.9, 82.0-626.0)	227.0 (60.9, 102.0-399.0)	0.81	
Liver biopsy results				
n(%) ballooning	92 (100%)	67 (74.4%)	<0.000	
n(%) inflammation	50(54.4%)	11 (12.2%)	<0.000	
n(%) fibrosis	92 (100%)	17 (18.9%)	<0.000	
n(%) steatosis	92(100%)	90 (100%)	N/A	

Figure 1 shows the associations between proteomic signatures and

- tolerance score is associated with a 7.3 times increased odds for
- cardiorespiratory fitness score is associated with 92% increased
- doubling of renal insufficiency risk score is associated with 89% increased odds for at-risk NASH
- · Increased risk for a cardiovascular event within four years: every doubling of cardiovascular risk score is associated with 69% increased odds for at-risk NASH
- · Increased visceral fat predictions: every doubling of visceral fat score is associated with 63% increased odds for at-risk NASH Lean body mass, current renal function, and alcohol consumption
- predictions were not associated with at-risk NASH vs NAFLD. Table 1 shows the demographic and clinical characteristics of the LITMUS Metacohort based on at-risk NASH status.
- Participants with at-risk NASH are more likely to be female, have
- more diabetes and hypertension, have higher BMI, and worse liver parameters compared to participants that do not have atrisk NASH.

Conclusions

- · These results demonstrate that participants with at-risk NASH have proteomic signatures that are consistent with decreased cardiometabolic health compared to participants with NAFLD.
- · This study shows that SST can be used in multiple ways to better know your patient.
- Identifying proteomic phenotypes may be used to improve patient care and clinical trial screening and monitoring, and to identify the non-hepatic consequences of the progression of NASH.

Contact us

References

1. https://litmus-project.eu/publications/

2. Williams SA-O, Kivimaki MA-O, Langenberg CA-O, et al. Plasma protein patterns as comprehensive indicators of health.